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synopsis 
Dynamic mechanical properties of some epoxy matrix composites have been studied, 

comparing experimental data with theoretical models. The matrix in all composite 
samples was Shell Epon 828, a diglycidyl ether of bisphenol A, cured with meta-phenylene- 
diamine. Fibrous composite samples were made with glass and graphite fibers. Particu- 
late composite samples were made with glass microspheres, atomized aluminum, powdered 
silica, alumina, asbestos, mica, carbon black, and graphite. The dynamic elastic modu- 
lus and damping of these samples were measured at  temperatures between 85” and 345°K 
by a free-free flexural resonance technique. The dynamic modulus of parallel fiber com- 
posites follows the linear rule of mixtures for low fiber volume fractions; deviations from 
linearity at higher volume fractions appear to be due to defects caused by the sample 
fabricaJion technique. Dynamic moduli of the particulate composites conform, within 
experimental error, to the static modulus theory of Wu up to filler volume fractions of 0.35 
to 0.40. Deviations from Wu’s theory at  higher volume fractions may be due to agglom- 
eration of filler particles. The damping of particulate composites with quasi-spherical 
6ller particles appears to follow the rule of mixtures. In particulate composites with 
needle- and flake-type fillers, and in fibrous composites, the fillers are more highly 
stressed; with more of the strain energy in the low-damping fillers, overall damping is re- 
duced. Damping greater than that attributable to the matrix and filler may be due to 
slippage at the interface between them. In addition to supporting Wu’s theory of the 
elastic modulus of a particulate composite, this study demonstrates the utility .of the 
nondestructive free-free flexural resonance techniques for obtaining a large body of reli- 
able data in a short time from relatively few small samples. This greatly facilitates the 
experimental testing of theoretical models and the evaluation of fillers, matrix materials, 
and fabrication techniques. 

INTRODUCTION 
Epoxy matrix composites are of considerable interest in composite 

materials research because of the desirable properties of epoxy resins and 
the polymer systems they form. The resins have indefinite shelf life; they 
have little tendency to polymerize spontaneously without curing agents. 
A wide variety of curing agents, curing temperatures, and curing cycles 
makes them suitable for a number of manufacturing processes. Other 
desirable properties are chemical inertness of the cured systems, low shrink- 
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age on curing, curing reactions which may evolve no significant by-products, 
strong adhesion to other materials, and compatibility with many different 
fillers and additives. 

The elastic modulus of a composite material depends on the moduli of 
the matrix and filler, and on various subtle effects of the mixing and molding 
techniques. Longitudinal elastic moduli of parallel fiber composites follow 
a simple linear law, a t  least for uniform tensile stresses and small strains. 
However, as Nielsen‘ had pointed out, the general state of theoretical 
models for moduli of particulate-filled composites has been unsatisfactory. 

Modulus estimhtes have been derived from strain energy calculations, 
assuming equal stress and equal strain in the matrix and filler particles. 
The equal-stress and equal-strain estimates establish rigorous bounds for 
the composite modulus, but the gap between them is rather large. By a 
variational analysis, Hashin and ShtrikmanZ have reduced the gap to an 
amount acceptable for some materials, such as two-phase metal alloys, in 
which the moduli of the phases do not differ widely. However, for poly- 
mers filled with metallic or minerd particles the gap is still too wide to 
permit useful predictions of experimental results. 

.A number of composite modulus models are adaptations of theories of the 
viscosity of a liquid with solid particles in suspension. They rely on a pre- 
sumed analogy between stress-strain relationships in an elastic solid and 
stress-strain rate relationships in a viscous liquid. Mooney’s theory8 is in 
fair agreement with some experimental results for particulate-filled elasto- 
mers, but its predictions are too high for composites with a rigid polymer 
matrix. 

Another approach to the development of a composite modulus theory is 
to examine the stressstrain behavior of a single filler particle and the 
matrix material near it and generalize the result to an average for a large 
number of closely spaced particles. Merner4 has presented such a model 
for particles of spherical shape, which gives a conservatively low estimate of 
the modulus of epoxy-matrix composites. More recently, Wu6 has de- 
veloped a theory which gives an estimate higher than that of Kerner’s 
theory but lower than that of Mooney’s theory and also takes into account 
the effect of filler particle shapes other than spheres. 

The proof of a theoretical model requires the accumulation of a large body 
of experimental data. Conventional static mechanical testing to destruc- 
tion requires a large enough number of samples to give statistically signif- 
icant data for any given condition. If conditions such as filler concentra- 
tion and matrix formulation are to be varied, including temperature as a 
parameter, the number of specimens required becomes almost prohibitive. 
Fabrication and testing of large numbers of samples can be very expensive 
and time-consuming. Therefore, nondestructive dynamic mechanical 
testing is gaining acceptance as a method which supplements or comple- 
ments and in many cases clearly replaces static testing techniques. 

During the past twenty years, dynamic mechanical testing has gained 
recognition as a research method which can supplement such techniques as 
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chemical analysis, infrared spectroscopy, nuclear magnetic resonance, and 
dielectric measurements in the determination of the molecular structure of 
polymers. Quite a few papers on the dynamic mechanical properties 
(DMP) of amine-cured epoxy systems have appeared.s-18 These studies 
show that such systems may have their primary glass transition tempera- 
ture as high as the range in which thermal degradation begins. They also 
have strong secondary relaxations in the 2W300"K range, and some sys- 
tems have a third relaxation below 200°K. These relaxations and their 
variations with molecular structures of resins and curing agents, and other 
factors such as heat treatment, have given insights into the structures of 
these polymers and processes for controlling them. 

Research on the dynamic mechanical properties of epoxy-matrix com- 
posites has accelerated in the past five years. Gal~er in '~  studied the dy- 
namic mechanical properties of an epoxy system filled with TiOz particles. 
Schultz and TsaiZO studied unidirectional glass fiber composites with the 
fibers oriented a t  several different angles relative to the sample axis. Lif- 
shitz and Rotemzl studied powdered silica-epoxy composites, and Saxton 
and Kline22 used an atomized aluminum filler. Nielsen and LewisZ3J4 
worked with several particulate-filled composites. Dudek25sz6 studied 
unidirectibnal carbon fiber-epoxy composites. Hirai and Kline*tZ8 in- 
vestigated composites with some particulate carbon and graphite fillers. 

These workers used a variety of techniques to determine the dynamic 
mechanical properties. A number of them employed torsion pendulums 
similar to that of N i e l ~ e n . ~ ~  Others, including Schultz and Tsai20 and 
D ~ d e k , ~ ~ , ~  vibrated their samples in cantilever or vibrating reed modes. 
The free-free flexural resonance technique of Forstera is one of those pre- 
ferred by Kline' and his associates. 

To date, DMP research has consisted mostly of studies of unfilled poly- 
mer systems and investigations of certain specific composites. No com- 
prehensive presentation of the elastic moduli of composites based on a single 
epoxy matrix with a variety of fillers has yet appeared. The present study 
has as its objective an examination of the DRIP of representative compos- 
ites based on a matrix of a diglycidyl ether of bisphenol A cured with a stoi- 
chiometric concentration of mta-phenylenediamine. Measurements were 
made of the dynamic elastic modulus and internal friction of composite 
samples by the Forster methodm using a free-free flexural resonance test 
system designed by I(line.31 A selected assortment of fibrous and particu- 
late fillers was chosen to explore the mechanical properties of composites 
with this matrix. Experimental data were analyzed to test the validity of 
Wu's theory of the elastic modulus of a particulate compo~ite.~ 

EXPERIMENTAL 

Sample Preparation 
The epoxy resin used as the matrix in all composite samples was a digly- 

cidyl ether of bisphenol A, Epon 828, a product of the Shell Chemical 



3394 JENNESS AND KLINE 

Company. The supplier characterizes the molecular structure of this resin 
as 

C ~ S ~ H - C H  q - L q - O - C H d H - C H A ]  

0 OH 

0 
- J : m H A H - c H 2  / \  

.--[ ;: 
AH* 

where the symbol (p represents the phenyl group of aromatic ring. For 
n = 0, the molecular weight is 340, and this species is the major constituent. 
Longer-chain molecules are present in sufficient concentration to make the 
average molecular weight 370 to 385. If n = 1 for all these, an average 
molecular weight of 370 would mean that 90% of the molecules are of the 
smaller species. If molecules with n > 1 are present, n = 0 for more than 
90% of the population. 

This resin was cured with metu-phenylenediamine (mPDA), with structure 
H2N-p and molecular weight 108. Assuming an average molecular 

\ 
NH2 

weight of 370 for the resin, with two epoxide groups per molecule, its epoxide 
equivalent is 185. Then the stoichiometric mass ratio is 14.6 parts mPDA 
per 100 parts of the resin. 

This curing agent is a solid at room temperature, so mixing is facilitated 
if both it and the resin are heated to its melting point, 623°C. However, 
it was found desirable to  inhibit premature polymerization by minimizing 
the time the mixture was kept above this temperature. A stoichiometric 
amount of mPDA granules was poured onto the resin and the container was 
placed on a low-power electrical heating element until the mPDA granules 
floating on the resin began to melt. At the mPDA melting temperature, 
the viscosity of the resin is low enough to facilitate mixing without stir- 
ring. This avoids the introduction of air bubbles which might contribute 
to the formation of voids in the sample. It was found that homogen- 
eous mixing of the resin and molten mPDA (indicated by a uniform lightc 
brown color) could be achieved within 1 to 3 minutes by a gentle rocking 
oscillation of the container while keeping the temperature of the mixture 
below 75°C. After removal from the heat, a small batch (50 g or less) 
cooled to room temperature in about 20 minutes. 

For fibrous composite samples, rovings of Owens-Corning E glass fibers 
and tows of Great Lakes Fortafil6T graphite fibers were used. (A roving is 
a loose yarn with a slight twist. A tow is a looser untwisted bundle of 
fibers.) Data on these fibers are compiled in Table I. A fiber bundle, 
consisting of a predetermined number of rovings or tows in parallel, was 
impregnated with the warm freshly prepared epoxy-mPDA mixture, then 
compressed in a rectangular bar mold, as shown in Figure 1. 
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FIBERS 

Fig. 1. Technique for molding fibrous composite samples. 

Data on the fillers used in particulate composite samples are compiled in 
Table 11. The glass microspheres and the aluminum, silica, and alumina 
fillers, with quasi-spherical filler particles, could be mixed into the warm 
resin-mPDA liquid and poured into a mold up to a volume fraction (vl) of 
about 0.5. For the graphite flakes, the maximum vl for which the mixture 
could be poured was about 0.3. For mica flakes and carbon black, the 
maximum pourable vl was about 0.2, and for asbestos, it was only 0.12. 

Immediately after mixing the resin and filler, the mixture was placed in a 
vacuum chamber to remove as much as possible of the air entrained by the 
filler particles. After collapse of the bubbles, the mixture was removed 
from the vacuum chamber and poured into a rectangular bar mold, as 
shown in Figure 2. With a glass strip for the mold cover, it was possible 
to detect and remove air pockets trapped during the mold closure operation. 

Chopped fiber (whisker) composites, intermediate in properties between 
parallel fiber and particulate composites, present special problems in sample 
preparation. Fibers with a maximum length of 3 mm cannot be handled as 
long fibers in tows or rovings, but neither can they be treated as particles. 
With short fiber fillers, a relatively low value of vf immobilizes the resin, so 
chopped fiber-resin mixtures cannot be poured as particulate composite 
mixtures over a very large range of v,. This offers some explanation for the 
finding that the maximum pourable vfwith the asbestos filler was only 0.12; 
the asbestos filler particles are mostly short fibers or needles. With chopped 
glass fibers, the maximum pourable vf was found to be 0.15, and it was 
possible to mold a rectangular bar sample with this concentration. With 
chopped graphite fibers, no mixture with a significant vl could be poured, 
and another technique was employed. 

The technique for making chopped fiber composite samples with more 
than the maximum pourable vl is illustrated in Figure 3. A glass tube 
(coated on the inside with grease to prevent adhesion of the cured epoxy- 
mPDA polymer) was packed with chopped fibers and the epoxy-mPDA 
mixture was drawn up the tube by vacuum. Chopped graphite fibers of 
about 3-millimeter length (Great Lakes Fortafil6T, identical with the long 
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GLASS STRIP 
FILLED RESIN 

Fig. 2. Technique for molding particulate composite samples. 

TO VACUUM PUMP 

t 

EPOXY 
RESERVOIR 

FIBERS 
IN TUBE 

a 
Fig. 3. Technique for molding chopped-fiber composite samples. 

fibers in the parallel fiber composite samples) packed into the tube to a 
density sufficient to give a vf value of only 0.046 so impeded the flow of the 
epoxy-mPDA mixture that 2 hr of pumping with a full atmosphere of 
vacuum were required to make it flow through a 12-cm tube length. With 
3-mm chopped glass fibers (Owens-Corning E glass, as in the long fiber com- 
posite samples) packed into the tube by a ramrod, vf was increased to 0.21. 

After compressing a resin-impregnated fiber bundle (Fig. 1), pouring 
particulatefilled resin into the mold (Fig. 2), or drawing the resin into a 
fiber-filled tube (Fig. 3), the samples were left in their mold assemblies 18 hr 
to cure to a solid phase at room temperature, the first stage of a two-step 
cure. After this 18-hr room-temperature cure, the mold assemblies were 
placed in a 70°C oven for 24 hr. The heat capacity of the mold assembly in 
contact with the resin prevented the exothermic heat of the curing reaction 
from raising the sample temperature more than a fraction of a degree above 
the oven temperature. 



EPOXY MATRIX COMPOSITES 3399 

To estimate the extent of the curing reaction, infrared absorption mea- 
surements were made on small fragments broken off an unfilled epoxy- 
mPDA sample after the initial room-temperature cure and after the final 
oven cure. These fragments were pulverized, mixed with KBr powder, 
and compressed to form thin discs for the sample holder of a Perkin-Elmer 
grating infrared spectrometer, Model 621. The epoxide band at 915 cm-1 
was examined to determine the portion of the epoxide groups which had 
reacted after each of these curing steps. It indicated that about 60% of 
the epoxide groups react during the room-temperature cure. After the 
final 70°C oven cure, about 75% have disappeared. 

After the 24-hr cure at  70"C, the mold assemblies were removed from the 
oven. Rectangular bar molds were dismantled to remove fibrous and par- 
ticulate composite samples with cross-sectional dimensions approximately 6 
mm X 5 mm. Chopped-fiber composite samples molded in glass tubes 
were retrieved by breaking the tubes off the outside, giving a round bar 
about 8 mm in diameter. All samples were trimmed to a length of about 11 
cm. 

The volume fraction vr of filler in a composite is a basic parameter to 
which its properties are often referred. It can be shown that for a parallel 
fiber composite fabricated by the technique of Figure 1, 

where N is the number of resin-impregnated tows or rovings laid into the 
rectangular bar mold, m is the mass per unit length of the tow or roving, pf 
is the density of the fibers in the tow or roving, and A is the cross-sectional 
area of the rectangular bar sample. For a particulate composite formed by 
mixing a mass Mf of filler into a mass Mm of matrix material, 

where pr is the density of the filler and pm is the density of the matrix, 
1.20 g/cm3 for the present epoxy-mPDA system. If there are no voids, 
the value of V 1  computed by eq. (2) will be equal to 

where pc is the density of the composite determined from the mass and vol- 
ume of the cured sample. If the sample contains voids, the volume fraction 
of voids is given by 

where ~ 1 2  is the value of vf given by eq. (2) and ~ j 3  is that given by eq. (3). 
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Vacuum pumping to remove air entrained by the spherical and quasi- 
spherical filler particles made the value of vl from eq. (3) approach that pre- 
dicted by eq. (2) up to 0.35 or 0.40. In the upper v f  range the spaces be- 
tween the filler particles are smaller, and not all the microbubbles can es- 
cape. Asbestos whiskers and flat flake fillers (mica and graphite) caused 
more air retention than the quasi-spherical filler particles; the value of vI 
given by eq. (3) fell below that from eq. (2) over the full range of v,for these 
fillers. 

Dynamic Mechanical Testing 

The equipment for flexural resonance testing has been described in detail 
by Kline.31 The sample is suspended in a test cell by two threads just out- 
side the nodes of the fundamental free-free mode, as shown in Figure 4. 
One thread is driven a t  middle-audio frequencies (5W3500 Hz) by a mag- 
netostrictive transducer. The other thread is in contact with a piezo- 
electric phonograph pickup cartridge which generates a signal proportional 
to the sample's response. 

The dynamic elastic modulus of a round bar sample is given by 

aM E' = 1.606 e) (2) f" (5) 

where L is the length of the sample (cm), d is its diameter (cm), M is its mass 
(g), and f is its fundamental free-free resonant frequency (Hz). For a 
rectangular bar sample whose cross section has a horizontal dimension b 
(cm) and a vertical dimension h (cm), 

3 M  
E' = 0.94645 (F) (5) f. 

As a measure of internal friction, 

Q-1 = - Af 
f (7) 

is determined by the half-power bandwidth Af a t  whose limits above and 
below the resonant frequency the response is 3 dB down from the maximum. 

The test cell is cooled below 100°K with liquid nitrogen, then warmed up 
by an electrical heating element a t  a rate of about 1°K per minute. The 
resonant frequency and Q-' are measured at 5°K intervals. In the present 
investigation, all tests were stopped at  345°K to avoid subjecting the sam- 
ples to  extended heat treatment at temperatures above their oven cure tem- 
perature. (Kreahling and Kline16 found that a diglycidyl ether of bisphenol 
A cured with mPDA at 70°C had its properties changed by subsequent heat 
treatment at higher temperatures.) 

Measurements of the dynamic elastic modulus over the temperature range 
from 85" to 345°K gave data points which lined up in curve families such 
as those shown in Figure 5 for samples filled with glass microspheres. All 
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Fig. 4. Bar-shaped sample suspended in flexural resonance test cell. 

E :  
10" dyne /cm2 

* 0 . 5 0  

= 0.35 

= 0.26  

T E M P E R A T U R E ,  OK 

Fig. 6. Dynamic elastic moduli of glass microsphere-epoxy composites. 

curves are of the same general form as that for the unfilled epoxy-mPDA 
matrix, the curve for v f  = 0. All fillers result in a composite modulus 
greater than the modulus of the unfilled polymer. For a given of, the use 
of fibrous fillers results in a greater increase in modulus and less temperature 
dependence than the use of particulate fillers. 

It.is evident 
that fibrous fillers lower the damping more than particulate fillers, and there 
may be a tendency for all fillers to shift the 250°K peak to slightly higher 
temperatures. All the other fillers showed similar behavior. 

The damping of glass-filled composites is shown in Figure 6. 
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Fig. 6. Damping of particulate and fibrous glass-epoxy composites. 

DISCUSSION 

The Epoxy Matrix 

The unfilled epoxy-mPDA system's behavior, shown by the data for 
vf = 0 in Figures 5 and 6, is similar to that reported by Kreahling and 
Klinels for a monodispersed diglycidyl ether of bisphenol A (molecular 
weight 340) cured with a stoichiometric concentration of mPDA, with the 
same heat treatment as the present samples. The dynamic modulus of the 
present system is close to that of Kreahling and Kline at  the lower end of 
the temperature range. In the higher range, it is about 5% below their 
modulus. The difference may result from the higher molecular weight 
constituents of the Epon 828 resin, which have greater chain lengths be- 
tween epoxide endgroups than the monodispersed resin of KreahIing and 
Kline, leading to a lower crosslink density than that of their system. 

The frequency of maximum response in the flexural resonance test is 
definite enough to make the dynamic modulus a continuous function of the 
temperature through the full temperature range, but in the vicinity of the 
250°K relaxation the resonance peaks (curves of sample response as a func- 
tion of driving frequency) are often asymmetric. Measurements of Q-' 
are not of high precision. Nevertheless, even though the data points in 
Figure 6 scatter, it is quite evident that the matrix has a prominent damping 
peak in the vicinity of 250'K. 

This peak appears quite similar to that observed by Kline' and by Kline 
and Sauer* in this temperature range for samples with the same resin and 
curing agent in very nearly the same ratio, with similar heat treatment. 
It is higher than a peak observed by Kreahling and KlinelG in the same 
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temperature range. Kreahling and Kline also observed a peak at about 
15OoI<, which appears in the present system as no more than a slight 
shoulder on the side of the 250°K peak. The greater height of the 250°K 
peak in the present system is to be expected with the greater modulus 
change, from about the same value as that reported by Mreahling and Kline 
at  low temperatures to a value less than their higher-temperature value. 

A number of investigatorss-13 attribute the 250°K damping peak to 
crankshaft motion of the ether linkages in the resin molecule. Kline' and 
Hirai and KlineI8 found the height of this peak increased as the portion of 
reacted epoxides increased. It appears that crankshaft motion of the 
ether linkages cannot take place until the epoxide triangles are opened and 
the loose ends of the resin molecule chains are attached to the polymer 
network. The 250°K damping peak and its associated decrease in the 
dynamic elastic modulus appear to be the result of a transformation from 
an almost completely immobilized system to a crosslinked network of stiff 
chain segments interspersed with loose crankshaft linkages. 

Fibrous Composites 

Figure 7 shows the dynamic modulus of glass fiber-epoxy composite 
sampIes a t  300°K as a function of v,. For the samples with long parallel 
glass fibers, vI was determined by eq. (1). The rule-of-mixtures line is 
drawn from the 300°K value of the matrix dynamic modulus, 3.82 X 10'0 
dynes/cm2, a t  v, = 0 toward Owens-Corning's valuea2 of the modulus of E 

E: 
10"dyne /cm2 

"1 
Fig. 7. Dynamic elastic moduli of glass fiber-epoxy composites as function of volume 

fraction of fibers, vf, at 300°K. Ruleof-mixtures l i e  based on matrix dynamic modulus 
of 3.82 X lolo, dynes/cm' at 300°K and Owens-Corning's modulus of 72.5 X lolo, 
dynes/cm2. Dashed curve based on Wu's theory of particulate composite with needle- 
shaped filler particles with glass modulus is reference for randomly oriented chopped 
fibers; chopped fiber data points above Wu curve indicate some degree of parallel 
orientation. 
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E: 
10 2 10 dyne/cm 

glass fibers, 72.5 X 10’0 dynes/cm2, a t  v, = 1.0. (Since the highest value 
of vf in any sample is 0.5, only half the rule-of-mixtures line is included.) 
Data points for parallel fiber composite samples lie near this line in the 
lower range of v,, but a t  the highest value of u, the data point falls below 
the line. This is probably due to breakage and misalignment of tightly 
packed fibers during compression of the rectangular bar mold assembly 
(Fig. l), a practical difficulty limiting the range of of over which the 
potential of parallel fiber composites fabricated by this technique can be 
realized. (It should be noted that the standard for comparison is not 
vr = 1.0 but v, = 0.9069, the value for close hexagonal packing of parallel 
cylinders.) 

The rule-of-mixtures relationship is based on a simple equal strain 
theory. With equal axial strain in the low-modulus matrix and high- 
modulus fibers, the stress in the fibers is much greater than that in the 
matrix between them. With most of the strain energy in the low-damping 
fibers, the damping of a fibrous composite sample is much lower than that 
of an unfilled matrix sample, as seen in Figure 6. 

Similar results were observed in graphite fiber-epoxy composite samples, 
Figure 8. The modulus of Great Lakes Fortafil 6T fibersaa 400 X 10” 
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dynes/cm2, is much greater than the matrix modulus. The graphite fiber 
tows are looser than the glass fiber rovings and the graphite fibers are not 
of round cross section, so close packing is more di5cult than it is in the case 
of the round Owens-Corning E glass fibers. As a result, stresses which 
build up during the mold compression operation are not as evenly dis- 
tributed as they are in the glass fiber bundles. Stress concentrations begin 
to break some of the graphite fibers at  lower values of 0, than in the molding 
of glass fiber composite samples. This appears to be the reason the data 
points for long fiber composite samples fall below the rule-of-mixtures line 
in Figure 8 a t  lower values of v,  than for the glass fiber composites, Figure 7. 
For samples in which fibers have broken and slipped out of the mold during 
fabrication, eq. ( 1 )  in inadequate, so eq. (3) was used for computation of Y, 
for these samples. (Resin-impregnated fiber bundles have relatively few 
voids, and those present can usually be detected and filled before the fibers 
are laid in the mold.) 

In a bar-type composite sample with long parallel high-modulus fibers in a 
low-modulus matrix, the longitudinal Young’s modulus is much greater than 
the longitudinal shear modulus, so the end-shear effect neglected in the 
derivation of the Bernoulli-Euler equation becomes significant. Flexural 
resonance must be interpreted on the basis of Timoshenko’s a n a l y ~ i s ~ ~ - ~ ~  
rather than the Bernoulli-Euler equation. Dolph“ has compiled Timo- 
shenko corrections of the Bernoulli-Euler resonant frequency for free-free 
modes. 

To use Dolph’s curves as nomograms, preliminary estimates of the 
longitudinal Young’s modulus and shear modulus are required. The dy- 
namic modulus computed from the Bernoulli-Euler resonant frequency by 
eq. (6) can be used as a firsborder estimate of the longitudinal Young’s 
modulus. The longitudinal shear modulus GL can be computed by Tsai’s 
for mula% 

The matrix shear modulus Gm and fiber shear modulus G ,  are each com- 
puted from the Young’s moduli Em and E ,  by 

E 
G =  

2 0  + 4 (9) 

where Y is Poisson’s ratio. For the matrix, the Poisson ratio urn = 0.334 
found by Novak and Bert38 is used. For the E glass fibers,32 uI = 0.22, 
and for the graphite fibers,33 U, = 0.2. For the glass fiber-epoxy com- 
posite samples, Dolph’s Timoshenko correction increased the Bernoulli- 
Euler dynamic modulus by no more than 3%. However, the extreme 
anisotropy of the graphite fiber-epoxy composite samples made the cor- 
rected dynamic elastic modulus as much as 8% greater than that computed 
by eq. (6). 
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Particulate Compodtes 
Parallel fiber composites have high strength and high moduli in the direc- 

tion of fiber alignment, but their anisotropy may lead to the failure of a 
structural part by shear a t  an unexpected location. Furthermore, the 
alignment of fibers along a designer's predicted trajectories of maximum 
tensile stress may present formidable practical difficulties in the fabrication 
of a structural part. On the other hand, many types of particulate com- 
posites are macroscopically homogeneous and isotropic and can be molded 
by simple casting techniques. It is of interest to analyze the properties of 
the same epoxy matrix with some typical particulate fillers. 

Damping 
Niel~en3~ suggests that damping in a particulate composite should 

follow a rule-of-mixtures law like that of the modulus of a parallel fiber 
composite. Then, with damping Qm-l in the matrix and Qr-I in the filler, 
the damping QC-' of the composite should conform to 

o glass microspheres 

A silica 

D aluminum 
o alumina 

x mica 

+ asbestos 
-- parallel glass fibers 

QC-' - 1 - . . [ 1 - = ]  Qr-' . 
Qn8-I 

"1 
Fig. 9. Relative damping of composites with low&unping fillers at 250°K damping 

pesk. Pardel glass fibers give lrvge reduction of damping. Partidate fillers with 
quasiepherid filler particles follow rule of mixtures; scatter of data points above and 
below line is indicative of lack of precision of damping measurements, and greater scatter 
above line indicates interface slippage. Asbestos and mica data points below line indi- 
cab behavior intermediate between particulate and fibrous composites. 
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Fig. 10. Relative damping of particulate composites at 300°K. Data points above rule- 
of-mixtures line indicate interface slippage. 

With a low-damping filler, the behavior should be approximately according 
to eq. (10) with Q,-l = 0, represented by the line in Figure 9. Data points 
for glass microspheres, silica, alumina, and aluminum fillers scatter along 
the line. The distance of the points below the line is probably no more 
than an indication of the low precision of the Q-' measurements, since, 
according to eq. (lo), even a filler with zero damping should not give 
points below the line. The points scatter farther above the line than 
below it. This could indicate that the fillers have small but finite damping. 
It could also indicate that there is more damping than that due to the 
matrix and filler particles; there may be some internal friction from slip- 
page at the interface between them. 

Asbestos and mica fillers lower the damping more than the spherical 
and quasi-spherical filler particles. This probably indicates that these 
materials have damping low compared to that of the matrix and that, be- 
cause of their large length/thickness ratio, their damping behavior is inter- 
mediate between that of quasi-spherical particles and parallel fibers. They 
take up more of the strain energy than quasi-spherical filler particles but 
less than long parallel fibers. Their data points in Figure 9 lie between 
the rule-of-mixtures line and the QC-l/QRI-l curve for the parallel glass fiber 
samples. 

Figure 10 compares the rule-of-mixtures line for low-damping particulate 
fillers with the composite/matrix damping ratios resulting from the 
spherical and quasi-spherical filler particles at 300°K. The data points 
all lie above the line,.indicating higher damping than that due to the 
matrix and filler. Internal friction from slippage a t  the filler-matrix inter- 
face is probably higher than that in the vicinity of the 250°K damping 
peak, Figure 9. Apparently the matrix, with a greater thermal expansion 
coefficient than the filler particles, shrinks tightly around them at  lower 
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temperatures and restrains the interface slippage. Also, the matrix is 
more glass-like at lower temperatures. In the higher temperature range, 
the matrix expands, loosens the filler particles, and probably permits more 
interface slippage. 

Nielsen' has noted a tendency for glass transition damping peaks to 
broaden with increasing filler content. The 250°K peak is not associated 
with the epoxy-mPDA system's primary glass transition, but with a 
limited secondary relaxation. It does appear to broaden as vf increases, 
but Figure 6 shows the broadening biased slightly toward the high-tem- 
perature side of the peak. 

With greater thermal expansion 
than that of the filler particles, the matrix probably shrinks around them 
at temperatures below the glass transition temperature or, in the present 
system, below the oven cure temperature. Below 3OO0I<, the filler par- 
ticles are probably subjected to compression as a result of this, and there are 
probably regions where the matrix is under tension. By analogy to the 
tension-frequency relationship in a vibrating string, polymer chain seg- 
.merits under tension may require greater thermal energy to initiate their 
motions. In regions of the matrix near the surfaces of filler particles, 
there may be steric hindrance to chain segment motions. An explanation 
suggested by several  investigator^'^^^^^^^^^ is the adsorption of a layer of 
immobilized polymer chains on the surface of the filler particles. It is 
postulated that polymer chains within these layers require greater thermal 
energy to set crankshaft linkages in motion. 

This may be a thermal strain effect. 

Dyn,amic Elastic Modulus of Composites with Spherical Filler Particles 
The elastic modulus of a particulate composite is a more complex func- 

tion of vf than the simple rule of mixtures for a parallel fiber composite. A 
number of theories have been developed to explain the stress-strain be- 
havior of particulate composites, but since the size, shape, and arrangement 
of a large number of particles are difficult to describe, micromechanical 
models can only be based on averages and approximations. 

By a presumed analogy between stress-strain relationships in elastic 
solids and stress-strain rate relationships in viscous liquids, viscosity 
theories have been converted into modulus theories. The formula of 
Nooney* gives a reasonable estimate of the behavior of a particulate-filled 
elastomer, but its modulus estimate is too high for a composite with a 
rigid polymer matrix. This is partly due to the fact that a theory for solid 
spheres suspended in a liquid deals with particles whose viscosity is effec- 
tively infinite relative to that of the liquid between them, while the filler 
modulus-matrix modulus ratio in a solid composite is finite. Also, the 
Poisson ratio of a rigid polymer is closer to '/a than to the value */2 usually 
associated with an elastomer. 

In a direct approach to the stress-strain behavior of a solid particulate 
composite, Hashin and Shtrikman2 have established rigorous upper and 
lower bounds to the modulus of a composite by strain energy analyses. 
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However, the gap between them is too wide to permit, useful predictions of 
experimental results. 

Others have examined the behavior of individual filler particles and the 
matrix region surrounding them, then derived models to approximate the 
behavior of large numbers of such inclusions. G~odier ‘~  found an exact 
solution to the problem of a single spherical inclusion in a block of matrix 
material subjected to a uniform stress with no slippage at  the interface. 
He points out that, by St. Venant’s principle, the inclusion’s perturbation of 
the strain field is effectively smoothed out within a relatively small distance. 
Thus, if particles do not approach each other too closely, a particulate com- 
posite can be treated as an array of such sphere-containing blocks, with its 
apparent modulus given by Goodier’s solution to the problem of a single 
spherical inclusion with properties different from those of the surrounding 
matrix. This of course is effective only over the lower range of v,. 

Kerner‘ has applied Goodier’s method to seek an effective value of the 
modulus for higher values of v,. He takes as his model a spherical filler 
particle surrounded by a shell of matrix material, which is in turn sur- 
rounded by an infinite medium assumed to have the macroscopic properties 
of the composite. He also assumed no slippage at  the concentric spherical 
interfaces. The result is one of the less complex expressions relating the 
properties of the composite to those of the matrix and filler. For a matrix 
of modulus Em and Poisson ratio v, filled with spherical particles of modulus 
E,  with the same Poisson ratio, Hirai and Wine2* express the Lewis-Nielsen 
form of Kerner’s equation24 as 

where 

7 - 5vm 
8 - l o v m  

A =  

(EdEm) - 1 
(EdEm) - A 

B =  

Assuming a composite’s dynamic modulus E,’ (measured by the flexural 
resonance technique31) conforms to the same micromechanical models as 
its static modulus E,, Figure 11 compares Kerner’s formula with data from 
samples filled with glass microspheres. The modulus of the glass in the 
microspheres is not known. However, available data44 indicate that all 
silica-based glasses have about the same modulus. Taking the E glass 
modulus (about 20 times the dynamic modulus of the epoxy-mPDA 
matrix at room temperature) as an approximation to the modulus of the 
glass in the microspheres, Ef /Em was assigned the value 20. For vm, the 
tensile Poisson ratio 0.334 found by Novak and Bert3* was used. Although 
their data are for a different epoxy system, this appears to be the most 
probable value for the Poisson ratio of the present system as well. (Their 
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Fig. 11. Ratios of composite dynamic modulus E,' to matrix dynamic modulus Em' 
for glass microsphere-epoxy composites compared to Kerner's theory for a composite with 
spheFical filler particles. Lower curve based on Kerner's formula. with filler modulus 20 
times matrix modulus; upper curve based on infinite filler modulus. 

tensile modulus, 0.547 X lo6 psi, is quite close to the dynamic modulus 3.82 
X 1O'O dynes/cm2 of the present system at  300°K.) 

Regardless of the temperature, all the data points lie above the Kerner 
curve for E,/Em = 20. The curve for E,/Em = aa is also included for 
reference; the higher-temperature data points lie above this curve as well. 
A similar increase in the composite/matrix modulus ratio with temperature 
was observed by Hirai and Klinez8 for the epoxy-DETA system filled with 
carbon and graphite particles, and by Lewis and NielsenZ4 for epoxy- 
triethylenetetramine filled with glass microspheres. Nielsen and Lewisza 
suggest that it is a thermal strain effect, and later work by Nielsen and Lee" 
lends further support to their theory. They assume the matrix, with a 
greater thermal expansion coefficient than that of the filler particles, 
shrinks around them as the system cools below the curing temperature, 
putting the matrix in tension. This biases it to a higher point on its non- 
linear stress-strain curve, where the slope (which determines the small- 
strain dynamic modulus) is lower than the zero-strain modulus. If the 
actual matrix modulus in the composite is lower than that of the unfilled 
matrix sample used as the vf  = 0 reference, the dynamic moduhs ratio 
E,'/Em' will be too low when the unfilled sample's dynamic modulus is 
taken for Em'. Then the unfilled sample's modulus can be used as Em' in 
this ratio only when there is no thermal strain. For samples cured at  
70°C (343"K), there should be very little thermal strain at 345"K, the 
upper limit of the temperature range over which the dynamic modulus is 
measured. Therefore, all further comparisons to be made here between 
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the dynamic moduli of samples and theoretical models will be based on data 
taken a t  this temperature. 

Since the modulus ratios predicted by Kerner’s formula are considerably 
lower than the experimental values a t  345”K, it is of interest to consider 
another theory. Lewis and N i e l ~ e n ~ ~  also found Kerner’s predictions too 
low and pointed out that Kerner’s formula is equivalent to the lower 
bound of Hashin and Shtrikman2. They modified eq. (11) by a correction 
factor in the second term of the denominator, making it a more complex 
function of v,. However, rather than adjusting Kerner’s formula, it is of 
more interest to compare experimental data with the more recent particu- 
late composite theory of W U . ~  

In a development similar to Kerner’s use of Goodier’s spherical inclusion 
model, Wu bases his theory on Eshelby’s treatment of the strain field 
resulting from an ellipsoidal inclusion in a homogeneous isotropic matrix. 
Eshelby& shows that if there is no slippage at  the interface, an ellipsoidal 
inclusion with elastic constants different from those of the matrix has uni- 
form stress within it when the matrix is subjected to a uniform stress a t  a 
large distance from the inclusion. In the determination of an effective 
composite modulus, the stress a t  intermediate points in the matrix need not 
be known. Wu5 generalizes the result for a large number of closely spaced 
ellipsoidal inclusions, averaging over all orientations to arrive at  an expres- 
sion for the modulus of a composite filled with randomly oriented ellipsoidal 
filler particles. 

However, 
three special cases are of direct practical interest. The simplest form of 
ellipsoid is the sphere. Spherical glass filler particles are available, and 
Nielsen’ suggests that theories for spherical filler particles should also apply 
to those that are approximately spherical. The limit toward which oblate 
spheroids tend is the thin flat disc; some filler particles are thin flat flakes 
which may approximate the behavior of this model. The other extreme 
form of ellipsoid is the prolate spheroid extended to a thin rod or needle; 
short fiber fillers may conform to this model. Thus, Wu’s theory predicts 
the composite moduli resulting from three common filler particle shapes. 

Wu’s formulas are cumbersome and quite tedious to apply. However, 
they become manageable when numerical values of the elastic moduli 
and Poisson ratios of the matrix and filler are inserted. With E f / E ,  = 20, 
the value v, = 0.334 of Novak and Bert,38 and the E glass value32 v f  = 
0.22, Wu’s formula5 for the modulus of a composite with spherical filler 
particles reduces to a quadratic equation from which the solid curve in 
Figure 12 was plotted. (For comparison, the Kerner curve for Ef /Em = 

This equation contains a residual unspecified quantity v,, the Poisson 
ratio of the composite, which is also a function of vf. This Poisson ratio 
does not exert a strong influence on the computed value of E, and was 
neglected by Wu5 in the illustrative examples a t  the conclusion of his 
paper, for which he assumed vC = V, = v f  = 0.2. However, for v f  # v,, 

Of course, few if any actual fillers have ellipsoidal particles. 

from Fig. 11 is included.) 
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Fig. 12. Ratios of composite dynamic modulus E,’ to matrix dynamic modulus Em‘ 
for glass microsphere-epoxy composites compared to theories of Kerner and Wu, at 
3 4 5 O . K .  

it is reasonable to expect ve to approach v, at  low vl and vj at high vl. 
Taking vc = vm in Wu’s formula makes Ec/Em = 1 at  v j  = 0, but the curve 
then intersects v f  = 1 a t  a point where E,/Em > El/E,. On the other 
hand, the curve generated by taking v, = vl in Wu’s formula falls to EJEm 
= 1 at  a finite value of v,. To improve the precision of the Wu curve in 
Figure 12, a first-order interpolation was made between these two curves. 
At each value of E,/E,, the vf  coordinate was taken as that of the curve 
for vc = v, plus a fraction v f  of the vl difference between it and the curve for 
vc = vF This may not be in strict conformity with Wu’s theory, but 
the difference between the two curves is not large; any errors introduced 
by this vc adjustment should be rather small. 

Of course, there is an obvious question of the validity of Wu’s theory at  
high v,. Wu’s formulas express a continuous functional relationship be- 
tween EJE, and v1 over the full range of v from 0 to 1.0. However, with 
spheres of uniform diameter in close regular packing,” the maximum 
possible value of vl is 0.74. In  the present work, this value WM not ap- 
proached; it is of primary interest to compare the data with the WU curve 
in Figure 12 in the range 0 < v f  < 0.5. 

The data points in Figure 12 lie near the Wu curve at  the lower values of 
ul, but the point for the highest value of vl falls well below it. It is postu- 
lated that this is due to voids; air entrained by the filler particles could not 
be completely evacuated from filled resin mixtures with v f  greater than 
0.35 to 0.40. 

In their work on epoxy-DETA filled with carbon and graphite particles, 
Hirai and Kline2* derived a void correction factor based on WU’S formula 
for spherical filler particles5 by assuming a composite with voids to be a 
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Fig. 13. Ratios of composite dynamic modulus E,' to matrix dynamic modulus Em' 
for aluminum-epoxy and silica-epoxy composites compared to Wu's theory of a particu- 
late composite Wed with spherical particles, at 345°K. 

homogeneous material containing spherical particles of zero modulus. 
They assumed a composite Poisson ratio v, = 0.2, which leads to 

(12) - -  - 1 - 2v, EC, 
EC 

where E,, is the modulus of a composite with a volume fraction of voids v,  
determined by eq. (4). (This gives a conservatively pessimistic estimate. 
With a higher value of v,, the coefficient of the second term is somewhat 
less than 2.) 

The sample with the highest value of v1 in Figure 12 had a void content 
v,  = 0.037 and the void-correction factor computed by eq. (12) is 0.93. 
Inserting 0.93 E, in place of E,  in Wu's formula generates the curve seg- 
ment (shown by - - - -) below the solid curve in the upper right-hand 
corner of Figure 12. The data point lies below this void-corrected Wu 
curve, so it appears that the sample may contain defects more significant 
than simple bubbles in a homogeneous filler-matrix mixture. There are 
probably regions of agglomerated filler particles which have not been dis- 
persed into the matrix. 

Aluminum has about the same modulus as glass, and the modulus of 
silica is also near this value." Aluminum and silica particles are quasi- 
spherical in that they are neither flakes nor fibers, so it is of interest to 
compare these fillers with Wu's theory for spherical filler particles. Figure 
13 reproduces the Wu curve of Figure 12 and presents data points for 
samples filled with silica and atomized aluminum. The silica-filled com- 
posite data points lie near the curve at  low vI and fall below it a t  high v1 

in a manner similar to those in Figure 12. This again probably indicates 



3414 JENNESS AND KLINE 

5 

“f 

Fig. 14. Ratios of composite dynamic modulus E,’ to matrix dynamic modulus Em’ 
for alumina-epoxy composites at 345’K compared to Wu’s theory of a particulate com- 
posite filled with spherical particles. Upper curve based on filler modulus equal to Voigt 
aggregate average for A 1 2 0 3  crystal; lower curve based on Reuss aggregate average. 

defects in the composite sample with the highest filler concentration. This 
sample has a fairly low value of vo, insufficient to explain the difference on 
the basis of the void correction factor calculated by eq. (12). Therefore, 
it appears that the silica particles, like the glass microspheres, have a 
tendency to agglomerate at values of v,  above 0.40. The data points for 
aluminum-filled samples also fall below the curve at  the higher values of v,, 
indicating that the aluminum filler particles also may have a tendency to 
agglomerate. 

The alumina filler particles are also quasi-spherical, but require a new Wu 
curve for comparison, since E ,  is considerably higher for alumina than for 
glass, silica, and aluminum. Furthermore, the alumina particles are 
anisotropic crystallites, so E ,  must be an average value intermediate 
between the maximum and minimum moduli of the A120a crystal. 

To compute coordinates of points to plot a Wu curve for comparison 
with the data from alumina-filled samples, E ,  and Y ,  in Wu’s formula for 
spherical filler particles5 were taken from a compilation by Simmons and 
Wang48 of the aggregate average values for randomly oriented crystalline 
particles. Their Voigt aggregate average values for alumina (based on the 
assumption of equal strains along the principal axes of randomly oriented 
crystallites) are v, = 0.233 and E, = 4.01 X 10l2 dynes/cm2, whichis 
about 125 times the dynamic modulus of the matrix a t  345°K. The Reuss 
aggregate average values (based on equal stress) are I, = 0.240 and El  = 
3.90 X 10l2 dynes/cm2, for which E,/E, = 117.5. 
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Wu curves based on both the Voigt and Reuss values are presented in 
Figure 14, together with data points for samples filled with powdered 
alumina. Since the alumina 
particles are not perfect spheres, they should result in slightly higher values 
than Wu’s sphere theory, which predicts that spheres are the filler particle 
shape which gives the least increase in modulus for a given value of vI. 
For the highest value of of, the data point lies below both curves; again, 
the agglomeration of filler particles is considered to be the dominant cause. 

The lower data point lies above both curves. 

Dynamic Elastic Modulus of a Composite with Disc-Shaped Filler Particles 
Wu’s theory predicts that filler particles in the form of thin discs should 

give the maximum increase in modulus for a given value of up Mica 
filler particles are not round discs, but they are thin, flat flakes which 
might be expected to approximate the behavior of disc-shaped particles. 
The solid curves in Figure 15 were prepared from Wu’s formula for disc- 
shaped filler particles6 by the same general procedure as that for the curves 
in Figure 14. For the muscovite mica crystal, Simmons and Wang48 list 
Voigt aggregate average values vI = 0.227 and El = 1.008 X 10l2 dynes/ 

Wu’s theory (discs) 
based on Voigt overage 

c 

vf 
Fig. 15. Ratios of composite dynamic modulus E,’ to matrix dynamic modulus Em’ 

for mica-epoxy composites at 345OK compared to Wu’s theory of a particulate composite 
with disc-shaped filler particles. Upper curve based on filler modulus equal to Voigt ag- 
gregate average for muscovite crystal; lower curve based on Reuss aggregate average. 
Curve based on Wu’s theory for spnerical filler particles with Voigt aggregate average 
modulus shown at bottom for comparison. 
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Fig. 16. Ratio of composite dynamic modulus E,' to matrix dynamic modulus Em' for 
graphite-epoxy composites at 345'K compared to Wu's theory of a particulate composite 
with diswhaped filler particles. Upper curve based on filler modulus equal to Voigt 
aggregate average for graphite crystal; lower curve based on Reuss aggregate average. 
Segment of Wu curve for spherical filler particles with ten times matrix modulus included 
for comparison with data point from carbon black-epoxy composite sample. 

cm2 = 30.3 Em. The Reuss-average values are v f  = 0.279 and E,  = 
0.568 X 10l2 dynes/cm2 = 17 Em. The data points in Figure 15 lie be- 
tween the Wu curves based on the Voigt and Reuss values, giving con- 
siderable support to Wu's theory for disc-shaped filler particles. Com- 
parison of Figures 14 and 15 shows that quasi-spherical alumina particles 
result in a considerably lower modulus ratio at low of, even though their 
modulus is about four times that of thc mica flakes. It is evident, both in 
the theoretical Wu curves and in the experimental data points, that the 
shape of the filler particles is more decisive than their modulus. For 
comparison, a Wu curve for spherical filler particles with the Voigt param- 
eters of mica is included in Figure 15. 

Graphite flakes might also be expected to conform to Wu's theory for 
disc-shaped filler particles. However, the situation is complicated by the 
extreme anisotropy of the graphite crystal. The curves in Figure 16 are 
based on Voigt and Reuss aggregate values of V f  and El computed by 
Hearmon's formulas49 for average values of the elastic constants of aniso- 
tropic crystallites. Values of the graphite crystal elastic constant2 re- 
cently presented by Kelly% were used in these calculations, leading to 
Voigt-average values v,  = 0.197 and Er = 524 X 1O1O dynes/cm2 = 157.5 
E m  and Reuss-average values v, = 0.390 and E,  = 25 X 1Olo dynes/cm2 = 
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7.5 Em. The Wu curves based on these Voigt and Reuss values in Figure 
16 diverge widely. 

The data points for the samples filled with SP-1 natural graphite flakes 
lie near the Wu curve based on the Reuss values. This may be associated 
with the anisotropy of the graphite crystals and the large diameter/ 
thickness ratio of the particles. Most of the filler-matrix contact is on 
the faces orthogonal to the c-axis of the graphite crystallites, with only a 
small portion of the total interface area at  the edges. This is favorable 
for the transmission, between the matrix and the filler particles, of both 
basal-plane shearing stresses and normal stresses in the c-axis direction. 
The filler particles have their highest compliances for these stresses, so 
they might be expected to deform in such a manner as to distribute the 
strains in an approximation of the Reuss equal-stress model. At lcast it 
is obvious that the Voigt equal-strain model is inappropriate for t,he highly 
anisotropic graphite filler particles. 

The data point for the sample with the highest concentration of graphite 
flake filler in Figure 16 lies significantly above the Wu-Reuss curve. This 
may be due to partial orientation of the graphite flakes with their high- 
modulus axes parallel to the axis of the sample. Wu’s theory assumes 
random orientation of the particles; but as vf increases, anisotropy can be 
expected to occur at some stage. 

A thin disc of diameter d and thickness t, free to assume any orientation, 
must be assigned a spherical volume 7rd3/6, even though it actually occupies 
a volume 7rd2t/4. The ratio of its actual volume to its random orientation 
volume is then 3 / d / d .  The maximum volume fraction possible for close- 
packed spheres4? is 0.74, so the volume fraction below which disc-shaped 
filler particles might have freedom of orientation is 

Equation (13) is not to be assigned any great significance, since random 
orientation of a large number of discs may still be possible even though 
many of them intrude into the random orientation spheres of others. 
However, it is of interest to note that Taylor, Iiline, and WalkeF found 
the SP-1 natural graphite flakes to have an average diameter of about 30 
pm and an average thickness of about 0.5 pm. With t /d = 1/60, eq. (13) 
indicates that some loss of randomness in the orientation of the graphite 
flakes may begin with vf as low as 0.02. Still, it is possible for the overall 
orientation to remain random on a macroscopic scale if the orientations 
of small, parallel-stacked domains are distributed over all directions. This 
appears to be valid in Figure 16 up to a vy value of about 0.25. (The dis- 
tances of the points for v y  = 0.15 and 0.25 from the curve probably indicate 
no more than the experimental spread of the data.) 

In contrast to graphite, carbon black is the least effective filler in the 
present series for increasing the modulus of a composite. Its particles are 
approximately spherical and behave in the epoxy matrix as a filler with a 
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Fig. 17. Ratios of composite dynamic modulus Ec' to matrix dynamic modulus Em' 

for mbestos-epoxy composites at 345°K compared to Wu's theory of a prticulate com- 
posite with needleshaped filler particles. Filler modulus assumed equal to modulus of 
asbestos fibers, 170 X 10" dynes/cm2. Data points fall below curve; filler particles not 
all needle-shaped. 

modulus about ten times that of the matrix, a result also noted by Hirai 
and I<line.2* For reference, Figure 16 includes a segment of a Wu curve 
for spherical filler particles with Ef/E,,, = 10 and a data point for a carbon 
black-epoxy composite sample. Payne, Whittaker, and Smith41 have 
noted that carbon black filler particles are actually agglomerates of much 
smaller particles. They are broken up into smaller agglomerates by stir- 
ring into a polymer matrix, but these tend to remain together in long 
chains. Such entities might behave in a manner similar to chopped 
fibers or needle-shaped filler particles. This offers an explanation of the 
fact that carbon black could not be mixed into the matrix in much greater 
concentration than the asbestos and mica fillers. 

Dynamic Elastic Modulus of a Composite with Needle-Shaped 
Filler Particles 

The other extreme in the filler particle shapes considered by Wus is 
needles, whiskers, or chopped fibers. The modulus of asbestos fibers has 
been givens2 as about 170 X 10'0 dynes/ctn2, or 50 times that of the matrix 
a t  345OK; this value of E ,  was used in Wu's formula for the modulus of a 
composite with needle-shaped filler particles5 to plot the curve in Figure 17. 
Data points lie below this curve. This is probably due in part to voids, 
but may also be due to the fact t'hat the asbestos filler contains some quasi- 
spherical granules in addition to the fibrous particles and thus is not en- 
tirely a needle-type filler. It may also be due to an error in the value62 
assumed for the modulus of the asbestos filler. 

Needle-shaped filler particles, of course, can become oriented parallel 
to each other so that they no longer conform to Wu's theory. By a 
derivation similar to that of eq. (13), it can be shown that a short fiber of 
length d and thickness t has an actual volume rdt2/4,  a random orientation 
volume rds/6,  and a free orientation volume fraction 

. 

2 
vfn = 1.11 (5) * 
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Again, no great significance is to be attached to numerical values computed 
by this formula, but it does show that needle-type filler particles tend to 
interfere with each other at a very low vf. This offers some explanation of 
the difficulties encountered in achieving large values of v f  in samples filled 
with asbestos and chopped fibers. 

Composites with short-fiber or needle-shaped filler particles can have 
properties intermediate between those of particulate and parallel fiber 
composites. If the needles or chopped fibers have lengths large compared 
to their diameters and are oriented parallel to each other, the composites 
have very nearly the same properties as long fiber composites in the direc- 
tion parallel to the fibers. In a direction orthogonal to the fibers, their 
properties are similar to those of a particulate composite with quasi- 
spherical filler particles. With completely random orientation of chopped 
fibers, the composite should conform to Wu’s theory for a particulate com- 
posite with needle-shaped filler particles. In practice, chopper fiber com- 
posites usually have their fibers partially oriented, conforming neither 
to Wu’s theory nor to the parallel fiber model. 

Wu’s formula for needle-shaped filler particles6 with the elastic con- 
stants of the glass and graphite fibers was used to plot the dashed curves 
in the lower left-hand area of Egure 7 and 8. Data points for chopped 
fiber-filled samples lie between these Wu curves and the rule-of-mixtures 
line for parallel fibers; the chopped fibers have neither completc random- 
ness nor parallel orientation. 

Practical considerations 
A summary of particulate-composite moduli a t  300°K is compiled in 

Figure 18. Carbon black is the least effective filler for increasing the 
modulus, and asbestos and mica are the most effective. None of these can 
be mixed into the matrix in very high concentration. 

Aluminum, silica, and glass microspheres all result in about the same 
modulus for a given value of v,. Aluminum-filled composites are easily 
machinable, while glass and silica particles abrade cutting tools. 

E: 
10” dyne / c  m2 

2 0  

15 

10 

5 

0 
0.1 0.2 0.3 0.4 0.5 

“1 
Fig. 18. Dynamic moduli of particulate epoxy composites at 300°K. 
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Graphite and alumina fillers result in very nearly the same modulus 
for a given value of vf. The flat graphite flakes have a rather low aggre- 
gate-average modulus but result in a relatively high composite modulus 
because of their quasi-disc shape. Flake-type fillers are more effective 
than quasi-spherical particles in increasing the modulus of a composite, 
but they cannot be mixed into the matrix in sufficient concentration to  
occupy more than a minor portion of the total volume. This defeats one 
of the major purposes of particulate composites, the replacement of a 
relatively expensive matrix with cheap filler material. The alumina 
particles are quasi-spherical, but they equal or surpass the graphite flakes 
because of their high modulus. Because of their quasi-spherical shape, 
alumina filler particles can be mixed with the epoxy matrix up to higher 
values of v f ,  leading to a continuation of the E’(v1) curve beyond the 01 = 
0.3 limit for graphite. Of course, the hard alumina particles, like the glass 
and silica particles, abrade cutting tools; graphite-filled composites are 
more easily machined. 

CONCLUSIONS 

Dynamic elastic moduli have been determined at  temperatures between 
85’ and 345°K for a number of composites with representative fillers in a 
stoichiometric Epon 828-mPDA matrix. The data appear to result in 
extensive experimental verification of Wu’s theory of the elastic modulus 
of a particulate ~omposite.~ 

Wu’s theory appears to be valid for particulate composites reasonably 
free of defects such as voids and agglomerates of undispersed filler particles. 
It is based on a micromechanical theory-of-elasticity model and therefore 
constitutes an advance over previous theories which merely established 
upper and lower bounds or made use of a presumed viscosity-modulus 
analogy. Wu’s formula for spherical filler particles is useful for fillers 
whose particles are only approximately spherical, i.e., those without obvious 
elongation or flattening. The formula for disc-shaped filler particles ap- 
pears to be applicable to flat flake fillers whose particles are not necessarily 
round discs. For needle-shaped particles, the evidence is not as extensive; 
here, the situation is complicated by the practical difficulties involved in the 
mixing and pouring of resins filled with particles of this shape. Com- 
posites with disc- and needle-shaped filler particles may appear to deviate 
from Wu’s theory because of the tendency of the particles to become 
oriented parallel to each other during the processes of sample preparation. 
Overall, the present work confirms Wu’s theory for a variety of typical 
particulate fillers within the practical range of filler concentration. 

Dynamic moduli of parallel fiber composites conform to the linear rule of 
mixtures a t  low fiber volume fractions. Deviations from linearity a t  
higher volume fractions are probably due to breakage and misalignment of 
fibers resulting from the sample fabrication technique. 
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Damping in particulate composites with quasi-spherical filler particles 
appears to follow the rule of mixtures. In fibrous composites and in 
particulate composites with needle- and flake-type fillers, the fillers take 
up a greater portion of the strain energy and reduce the overall damping. 
Damping greater than that attributable to the matrix and filler probably 
indicates slippage at the interface between them. 

In addition to confirming Wu’s theory, this study demonstrates the 
validity of nondestructive freofree flexural resonance testingal as a re- 
search and engineering method. The elastic moduli and damping of a 
diverse variety of materials can be measured over a large temperature 
range. Theoretical models can be thoroughly tested. and the relative 
merits of various options in fillers, matrices, and additives can be compared. 
The effects of different fabrication techniques can-be evaluated economically 
within a short time with relatively few small samples. 

The authors are indebted to D. A. Whiting for infrared analysis and to P. R. Blanken- 
This work was supported in part by horn for assistance in dynamic mechanical testing. 

the U.S. Atomic Energy Commission. 
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